SHAPES, CURVES AND FONTS

2011 Introduction to Graphics Lecture 6

©Anthony Steed 2000-2006, Jan Kautz 2007-2012

Overview

- Shapes
 - Identity parade
- Curves
 - Bezier curves
- Paths
 - Collections of curves
- Fonts
 - Essentially paths

Shape Type Review

Math Revision

• Explicit equation form $y = x^2$

$$\square \text{ Implicit } f(x, y) = 0$$

$$x = r \cdot \cos(t)$$

$$r \cdot \cos(t)$$

$$y = r \cdot \sin(t)$$

$$t > 0, t < 2\Pi$$

Cubic Curve

Many types of cubic equation
General 1D:

$$y(t) = a + bt + ct^2 + dt^3$$

□ General 2D: one curve for each dimension

$$x(t) = a_x + b_x t + c_x t^2 + d_x t^3$$
$$y(t) = a_y + b_y t + c_y t^2 + d_y t^3$$

Cubic Curve

- General form is hard to edit
 - Parameters a,b,c,d have non-intuitive influence
 - Better to have control points
- □ Bézier curves are a classic example
 - Two end-points, two control points
 - Curve remains within convex hull of four points
 - User control is fairly intuitive

Form of the Equation

$$B(t) = (1-t)^{3} P_{0} + 3t(1-t)^{2} P_{1} + 3t^{2}(1-t) P_{2} + t^{3} P_{3}$$

- Note that intuitively this means that when t is near 0, the P_0 dominates.
 - The influence of each point is known as a weighting function
 - **B**₀ is the weight of P_0 , B_1 is the weight of P_0 etc...

Bernstein Polynomials

Plot of basis functions

Bisecting a Bézier

Recursive split (de Casteljau's algo.)

lf

A bisects P_0P_1 B bisects P_1P_2 C bisects P_2P_3 D bisects AB E bisects BC F bisects DE Then P_0ADF form new Bézier FECP₃ form new Bézier

Drawing a Bézier

- The Bézier bisection process suggest the following drawing process:
 - 1. If $P_0P_1P_2P_3$ are "close" together
 - Close might mean, within 2 pixels of each other other the screen
 - 2. Then plot the straight line P_0P_3
 - 3. Else bisect $P_0P_1P_2P_3$
 - 4. Recurse to step 1 on both sub-curves

Another View of a Cubic Bézier

Smoothness

- \square Note that the line P_0P_1 defines a tangent to the curve at P_0
- Common requirement to join two bezier curves together (P₀₋₃, Q₀₋₃)
- □ This requires:
 - **The points P_3 equals Q_0**
 - Tangents to be equal
 - I.e., P3 (Q0), P2, Q1 are collinear
 - Called C₁ continuity (1st derivative is continuous)
 - \square C₀: only positions are continuous (i.e. P₃ = Q₀)

Joining Bézier curves

Asymmetric: Curve goes through some control points but misses others

Quadric Bézier Example

Complex Shapes

Paths

A path is a list of segments where each segment is a line, quad or cubic

Edge are ordered, usually anti-clockwise

Types of Shape

□ Simple - Concave, Convex

□ Complex

Inside and Outside

Not just draw (stroke, fill)

□ For closed Shapes

Hit test - inside or outside based on a winding rules (nonzero or even-odd)

Counting Edge Crosses

- Draw a line from the test point to the outside
 - Count +1 if you cross an edge in an anti-clockwise sense
 - Count -1 if you cross and edge in a clockwise sense

Winding Rules

Non-zero

If total is non-zero then inside Odd-Even

□ If total is odd, then inside

Fonts

- □ Font: describes the way a letter "looks"
- □ Size: usually specified in pt.
 - A pt is 1/72 of an inch
- □ Fixed width vs. proportional
 - Fixed width: each letter has fixed width
 - Proportional: width depends on letter

Font Properties

 Fonts can have different properties:
 Bold
 Italic

•

Representing Fonts

Raster Fonts:

- A bitmap for each letter
- Scale dependent, i.e., need bitmaps for various sizes

Vector Fonts:

- Collection of line endpoints that define the letter.
- Just lines!

Representing Fonts

TrueType Fonts

- Collection of lines and curves (Bezier) as well as hints.
- Line and curves define outline of letter
- Hints adjust lines and curves depending on scale of font!
- □ It's very tedious to create fonts!!

Summary

- Curve definitions
 - Bezier curves
- Inside and outside shapes
 - Winding rules
- Fonts